Aerodynamic effects of surface deformities on aerofoils for low-speed stratospheric flight

Author:

Kimmons Jeremy1ORCID,Thomas Peter2ORCID,Colonia Simone3

Affiliation:

1. Airbus Defence and Space Limited, Stevenage, UK

2. Centre for Engineering Research, University of Hertfordshire, Hatfield, UK

3. Airbus Defence and Space Limited, Farnborough, UK

Abstract

High-altitude pseudo-satellites are an expanding focal area of the aerospace industry which require new technologies and manufacturing processes to reduce weight and increase efficiency with the aim of increasing endurance. One such process has resulted in the occurrence of small deformities along the leading edge of a lightweight unmanned aerial vehicle structure with the application of its skin, which may have a detrimental impact on its performance and efficiency. This paper focuses on the effects of these manufacturing deformities on the aerodynamic performance of the vehicle’s aerofoil when operating in low Reynolds number flow with the intention of identifying any detrimental flow variation. This analysis is achieved by comparing the lift curve, drag polar and pressure coefficient of both the deformed and undeformed cases of two aerofoils: a SG6042 and a GOE 523. This is accompanied with an examination of the local flow conditions scrutinising the near-wall y+ and turbulent kinetic energy calculations. The investigation finds that in two-dimensional flow, the deformities replicate the effects of transition trips in the shrinking or elimination of laminar separation bubbles. At Reynolds numbers below 250,000, the deformities reduce the net drag while leaving the lift largely unaffected. However, as a result, there is a slight shift in the minimum power condition in the order of 8% which would produce some performance loss for power efficiency and endurance.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3