Robust multi-fidelity design of a micro re-entry unmanned space vehicle

Author:

Minisci E1,Vasile M2,Liqiang H3

Affiliation:

1. School of Engineering, University of Glasgow, Glasgow, UK

2. Department of Mechanical Engineering, University of Strathclyde, Glasgow, UK

3. State Key Laboratory of Astronautic Dynamics, Xi'an Satellite Control Center, Shaanxi, People’s Republic of China

Abstract

This article addresses the preliminary robust design of a small-scale re-entry unmanned space vehicle by means of a hybrid optimization technique. The approach, developed in this article, closely couples an evolutionary multi-objective algorithm with a direct transcription method for optimal control problems. The evolutionary part handles the shape parameters of the vehicle and the uncertain objective functions, while the direct transcription method generates an optimal control profile for the re-entry trajectory. Uncertainties on the aerodynamic forces and characteristics of the thermal protection material are incorporated into the vehicle model, and a Monte-Carlo sampling procedure is used to compute relevant statistical characteristics of the maximum heat flux and internal temperature. Then, the hybrid algorithm searches for geometries that minimize the mean value of the maximum heat flux, the mean value of the maximum internal temperature, and the weighted sum of their variance: the evolutionary part handles the shape parameters of the vehicle and the uncertain functions, while the direct transcription method generates the optimal control profile for the re-entry trajectory of each individual of the population. During the optimization process, artificial neural networks are utilized to approximate the aerodynamic forces required by the optimal control solver. The artificial neural networks are trained and updated by means of a multi-fidelity approach: initially a low-fidelity analytical model, fitted on a waverider type of vehicle, is used to train the neural networks, and through the evolution a mix of analytical and computational fluid dynamic, high-fidelity computations are used to update it. The data obtained by the high-fidelity model progressively become the main source of updates for the neural networks till, near the end of the optimization process, the influence of the data obtained by the analytical model is practically nullified. On the basis of preliminary results, the adopted technique is able to predict achievable performance of the small spacecraft and the requirements in terms of thermal protection materials.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multifidelity Data Fusion for the Estimation of Static Stiffness of Suction Caisson Foundations in Layered Soil;Journal of Geotechnical and Geoenvironmental Engineering;2024-08

2. Multifidelity Framework for Small Satellite Thermal Analysis;Journal of Spacecraft and Rockets;2024-01

3. A multi-fidelity model management framework for multi-objective aerospace design optimisation;Frontiers in Aerospace Engineering;2023-02-07

4. Issues in Deciding Whether to Use Multifidelity Surrogates;AIAA Journal;2019-05

5. EP_DE II: A significant algorithm to search the optimal solution for global optimization of multi-gravity assist trajectory;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering;2017-06-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3