Optimal hybrid Coulomb control for on-track rendezvous and docking of spacecraft

Author:

Kumar Gaurav1ORCID,Giri Dipak Kumar1,Kumar Shashi Ranjan1ORCID

Affiliation:

1. Department of Aerospace Engineering, Indian Institute of Technology Bombay, India

Abstract

This paper investigates the dynamics of on-track rendezvous and docking of two spacecraft, and stabilization using hybrid Coulomb control. Modeling electrostatic forces and torques for control of complex spacecraft geometries like cylinders is challenging. Point mass assumption of the spacecraft that disregards the chaser dynamics will lead to errors in force estimation during the terminal docking phase, resulting in a mission failure. This paper uses the effective sphere method to model Coulomb interactions between the chaser and the target. The method is coupled with the chaser’s tumbling motion about its body axes to develop a relationship between electrostatic force and attitude. The relative attitude dynamics of the chaser is then derived and incorporated into the system dynamics. Differential gravity and hybrid thrusters are used to stabilize the relative attitude of the two bodies. The charge-voltage relations are used to compute potential variations for the Coulomb control. An optimal linear quadratic tracking control is proposed for tracking a reference trajectory generated using solutions of Clohessy-Wiltshire-Hill’s equations. Numerical simulations are carried out for both non-linear and linear models of the Coulomb spacecraft to validate the proposed concept. Results have also been compared with an existing voltage feedback controller to demonstrate the merits and challenges of electrostatic actuation for rendezvous and docking.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Reference47 articles.

1. SCATHA survey of high-level spacecraft charging in sunlight

2. Whipple EC and Olsen RC. Importance of differential charging for controlling both natural and induced vehicle potentials on ATS-5 and ATS-6. In: Proceedings of the 3rd Spacecraft Charging Technology Conference, NASA CP 2182, NASA Lewis Research Center, 1980, pp. 887.

3. Spacecraft potential control aboard Equator-S as a test for Cluster-II

4. Results from active spacecraft potential control on the Geotail spacecraft

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3