Experimental assessment of the dynamic stiffness of a fault-tolerant fly-by-wire hydraulic actuator

Author:

Di Rito G1,Galatolo R1

Affiliation:

1. Department of Aerospace Engineering, University of Pisa, Pisa, Italy

Abstract

The stiffness of an actuator depends on the closed-loop position control (architecture and parameters), on the load frequency, and, for fault-tolerant actuators, on the operative mode. The stiffness response is of basic importance for the design of actuators for primary flight controls, especially for high-performance aircrafts. Actually, during flight conditions characterized by high speed and high angle-of-attack, the dynamic interactions between aircraft structure, actuator, and aerodynamic loads can induce aeroservoelastic effects, which, if not controlled, can imply performance degradation and even instability. The study and the compensation of such concerns require the assessment of the resonant frequencies of the aeroservoelastic system, which can be performed only by characterizing the dynamic stiffness of the actuator. This article reports the experimental activities carried out for the characterization of the stiffness response of a fault-tolerant fly-by-wire actuator for the primary flight controls of a modern jet trainer, starting from the feasibility studies of the experiments up to the execution of the vibration tests. The actuator stiffness performance is evaluated in different fail-operative modes by artificially injecting hydraulic and electrical failures, and the experimental data are interpreted by means of an LTI model of the flight actuator, highlighting and discussing the effects that the failures induce on the stiffness performance.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3