Grid transformation and dynamic scattering for tail rotor radar cross section analysis

Author:

Zhou Zeyang1ORCID,Huang Jun1

Affiliation:

1. School of Aeronautic Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing, China

Abstract

With the promotion and enhancement of stealth technology of helicopter rotor components, the research on the dynamic radar cross section (RCS) of helicopter rotor is becoming more and more important and imminent. In order to facilitate the calculation and analysis of the electromagnetic scattering characteristics during rotor rotation, a dynamic scattering calculation (DSC) method based on quasi-static principle (QSP) and grid coordinate transformation is presented. After analyzing the advantages and disadvantages of QSP, the dynamic principle is used to describe the rotation process of the rotor. Combined with the grid coordinate transformation method, the RCS of the rotor is accurately calculated by physical optics (PO) and physical theory of diffraction (PTD). Then the influence of azimuth, elevator angle and observation distance on rotor dynamic RCS is analyzed. The results show RCS of the tail rotor is indeed dynamic and periodic and its main influencing factors include azimuth and elevation angle. The proposed DSC method is efficient and effective for studying the dynamic RCS of tail rotor.

Funder

the Excellence Foundation of BUAA for PhD

the National Natural Science Foundation of China

the project funded by China Postdoctoral Science Foundation

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigations on electromagnetic scattering characteristics of aircraft rudder considering electromagnetic discontinuities;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering;2023-09-29

2. W-type flying wing radar cross-section analysis;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering;2022-08-04

3. Study of RCS characteristics of tilt-rotor aircraft based on dynamic calculation approach;Chinese Journal of Aeronautics;2022-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3