Experimental investigation on forced response of mistuned bladed disc rotor in an aero-engine

Author:

Madhavan S1,Jain Rajeev1,Sujatha C2,Sekhar AS2

Affiliation:

1. Gas Turbine Research Establishment, Defense R&D Organisation, Bangalore, India

2. Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, India

Abstract

An experimental investigation on forced response of a first stage compressor mistuned bladed disc rotor is performed in an operational aero-engine. It is desired to evaluate the maximum blade amplitude response of the bladed disc for the existing blade mistuning pattern depending on blade mode, exciting engine order, and aerodynamic influences. Finite element analysis on a single cantilever blade is performed and the possible resonances are estimated. Bench tests on a stand-alone blade are conducted to verify the finite element predictions. Experiments are conducted on a full-scale core engine using blade tip timing system. Blade tip timing system utilizes noncontacting sensors installed on the engine casing which provides vibration responses of all the blades in a rotor. The vibration responses obtained from blade tip timing system is validated using simultaneously measured strains from a few blade-mounted strain gages. A good correlation is observed between the predicted and measured blade responses. The effect of blade mistuning on the amplitude resonant response of the bladed disc is explored experimentally. It is observed that the maximum amplitude response of the blades due to forced resonant excitation is far below the fatigue limits for the prevailing blade mistuning pattern. The present exercise of quantifying the blade resonant responses through efficient implementation of the blade tip timing system is crucial to understand and thus avoid high-cycle fatigue, which is one of the most serious problems in aero-engine development.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3