Aerodynamic model of propeller–wing interaction for distributed propeller aircraft concept

Author:

Bohari Baizura123ORCID,Borlon Quentin1,Bronz Murat2,Benard Emmanuel1

Affiliation:

1. Department of Aeronautical and Space Vehicles Design (DCAS), ISAE SUPAERO, Toulouse cedex, France

2. ENAC, UAV Laboratory, Toulouse, France

3. Department of Aeronautic and Aviation, Faculty of Engineering, National Defence University, Kuala Lumpur, Malaysia

Abstract

The present investigation addresses two key issues in aerodynamic performance of a propeller–wing configuration, namely linear and nonlinear predictions with low-order numerical models. The developed aerodynamic model is targeted to be used in the preliminary aircraft design loop. First, the combination of selected propeller model, i.e. blade element theory with the wing model, i.e. lifting line theory and vortex lattice method is considered for linear aerodynamic model. Second, for the nonlinear prediction, a modified vortex lattice method is paired with the two-dimensional viscous effect of the airfoils to simplify and reduce the computational time. These models are implemented and validated with existing experimental data to predict the differences in lift and drag distribution. Overall, the predicted results show agreement with low percentage of error compared with the experimental data for various thrust coefficients and produced induced drag distribution that behaves as expected.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3