Distributed containment formation control for multiple unmanned aerial vehicles with parameter optimization based on deep reinforcement learning

Author:

Liu Bojian1ORCID,Li Aijun1,Guo Yong1ORCID

Affiliation:

1. School of Automation, Northwestern Polytechnical University, Xian, China

Abstract

This paper devotes to addressing the distributed containment formation control problem for multi-UAVs with collision avoidance and external disturbances. The proposed communication structure design algorithm enables the followers to form the pre-defined formation based on the containment control. Then, based on the information of the desired position for the followers, a novel Lyapunov function is designed to achieve global collision avoidance, and an adaptive backstepping containment control law is proposed. Moreover, by taking the advantage of deep reinforcement learning, a parameter optimization method is presented to balance the value of input signals and the performance of the controller. Finally, the simulation results demonstrate the superiority and effectiveness of the proposed algorithms.

Funder

the National Natural Science Foundation of China

Aeronautical Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3