Evaluation of side spillage for a hypersonic air intake using computational fluid dynamic techniques

Author:

Javed Afroz1,Chakraborty Debasis1

Affiliation:

1. Directorate of Computational Dynamics Defence Research and Development Laboratory, Hyderabad, India

Abstract

Mass capture ratio of a hypersonic air intake is one of the most important performance parameters. However, no a priori estimate of its value exists for use in initial design exercise of a hypersonic vehicle. In the present work, an air intake of a non-axisymmetric scramjet engine, designed using stream thrust methodology, is studied using computational fluid dynamic techniques. A large amount of air mass flow rate is observed to spill from the sides, which is not accounted for in the initial design phase. In absence of even an approximate estimate of this spillage, computational fluid dynamic studies become the only available tool to evaluate the mass capture ratio. Simulations are also carried out with a side wall at the intake to stop spillage. Although mass capture ratio and static pressure at combustor entry improve, deterioration in other flow parameters such as static temperature, Mach number and total pressure is observed.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical investigation of scramjet inlet models for side spillage reduction;Aerospace Science and Technology;2024-10

2. Optimization Design and Parameter Modeling for an Elliptic Shock Wave;Journal of Aerospace Engineering;2024-09

3. Numerical study of a scramjet isolator performance under different sidewall compression angles;Thermal Science and Engineering Progress;2023-12

4. Three-dimensional CFD investigation of a scramjet inlet under different freestream conditions;Thermal Science and Engineering Progress;2022-01

5. Prediction of dynamic derivatives for air-breathing hypersonic vehicle using a harmonic balance method;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering;2019-03-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3