Framework for estimation of nacelle drag on isolated aero-engines with separate jets

Author:

Ramirez-Rubio Santiago1ORCID,MacManus David G1

Affiliation:

1. Centre for Propulsion Engineering, Cranfield University, Bedfordshire, UK

Abstract

Typically, the evaluation of nacelle drag in preliminary design is required to find an overall optimum engine cycle and flight trajectory. This work focuses on the drag characteristics of aero-engine nacelles with separate jet exhausts. The main body of analysis comes from 3D numerical simulations. A new near-field method to compute the post-exit force of a nacelle is presented and evaluated. The effects of the engine size, Mach number, mass flow capture ratio and angle of attack are assessed. The results obtained from the numerical assessments were used to evaluate conventional reduced-order models for the estimation of nacelle drag. Within this context, the effect of the engine size is typically estimated by the scaling ratio between the maximum areas and Reynolds numbers. The effect of the angle of attack on nacelle drag is mostly a function of the nacelle geometry and angle of attack. In general, typical low-order models based on skin friction and form factor can underestimate the friction drag by up to 15% at cruise operating point. Similarly, reduced-order models based solely on Reynolds number, and Mach number can underestimate the overall nacelle drag by up to 74% for free stream Mach number larger than the drag rise Mach number.

Funder

Departamento Administrativo de Ciencia, Tecnología e Innovación

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3