Performance comparison between a conventional helicopter and compound helicopter configurations

Author:

Ferguson Kevin1,Thomson Douglas1

Affiliation:

1. Department of Aerospace Sciences, University of Glasgow, Glasgow, UK

Abstract

The compound helicopter is a high-speed design concept that is once again being explored due to emerging requirements for rotorcraft to obtain speeds that significantly surpass the conventional helicopter. This increase in speed, provided efficient hover capability is maintained, would make the compound helicopter suitable for various roles and missions in both military and civil markets. The aim of this paper is to investigate the compounding of the conventional helicopter and how the addition of thrust and wing compounding influences the performance of this aircraft class. The paper features two compound helicopters. The first configuration features a coaxial rotor with a pusher propeller providing additional axial thrust, and is referred to as the coaxial compound helicopter. The second configuration, known as the hybrid compound helicopter, features a wing and two propellers providing thrust compounding. In this study, the performance of these two compound helicopter configurations are assessed and compared with a conventional configuration. The paper presents the standard performance parameters of each configuration which include the power required in steady level flight, the maximum range, the maximum endurance and the hover ceiling of each of the aircraft configurations. Furthermore, a performance analysis of each configuration flying standard helicopter missions is conducted. The results of the hybrid configuration show that the addition of the wing to the design successfully offloads the main rotor at high speeds; however, significant propulsive power is required by the propellers to overcome the airframe drag. Concerning the coaxial configuration, the power required by the coaxial compound and baseline configurations are comparable at low speeds. However, in high-speed flight a significant amount of power is required by the propeller to divorce the coaxial rotor of its propulsive duties. The results also reinforce the importance of reducing airframe drag in a potential compound helicopter design.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3