Investigating the potential of parallel hybrid-electric retrofit of narrow-body airliner for emission reduction

Author:

Jiang Tianhong1,Liu Yaolong1ORCID,Zheng Yao1,Elham Ali2

Affiliation:

1. School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, China

2. University of Southampton, Southampton, England, UK

Abstract

Due to the high power and energy demands of large aircraft and low energy density of batteries, parallel hybrid-electric propulsion (HEP) is an in-between solution to reduce carbon emissions instead of full-electric propulsion. Considering the long in-service time, parallel HEP retrofit of existing large commercial or transport aircraft is favorable for technical risks and economic values. To enhance the reliability of the analysis, a comprehensive parallel HEP retrofit study of a narrow-body airliner is carried out in this paper. At first, efficient and accurate aerodynamic and engine deck surrogate models are built to include multidisciplinary impacts. To capture the off-design performance, a detailed flight mission is modeled based on exact flight dynamic equations, which is solved in a time-stepping manner. Then, the hybridization levels and battery usage strategy are thoroughly investigated. Besides, fuel burn, carbon emissions, and total energy consumption performance is studied for fixed take-off weight and selected flight range scenarios. The results show that the total energy in flight can be reduced by 7.9% and fuel combustion and carbon emissions can be reduced by 13.2% for the 2000 km flight distance case compared to the reference case. The greenhouse gas (GHG) emission reductions are 3059.8 kg CO2, 1220.0 kg H2O, 0.1937 kg SO4, and 0.0387 kg soot. As our methods have incorporated reliable multidisciplinary data and off-design features, the results and conclusions on the parallel HEP retrofit of large aircraft for carbon emission reductions and sustainable aviation goals are more relevant.

Funder

Fundamental Research Funds for the Central Universities

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Reference37 articles.

1. Bradley MK, Droney CK. Subsonic ultra green aircraft research phase II: N+ 4 advanced concept development: NASA/CR-2012-217556 2012. USA: NASA.

2. Exploring Vehicle Level Benefits of Revolutionary Technology Progress via Aircraft Design and Optimization

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3