Affiliation:
1. School of Aeronautics, Northwestern Polytechnical University, Xi’an, China
Abstract
In this paper, we propose a regression-based nonlinear reduced-order model for nonlinear structural dynamics problems, called the Nonlinear Identification and Dimension-Order Reduction (NLIDOR) algorithm. We evaluate the algorithm using a simple toy model, a chain of coupled oscillators and an actual three-dimensional flat plate. The results show that NLIDOR can accurately identify the natural frequencies and modes of the system and capture the nonlinear dynamical features, while the linear Dynamic Mode Decomposition (DMD) method can only capture linear features and is influenced by nonlinear terms. Compared with the full-order model (FOM), NLIDOR can effectively reduce computational cost, while compared with DMD, NLIDOR significantly improves computational accuracy. The results demonstrate the effectiveness and potential of NLIDOR for solving nonlinear dynamic problems in various applications.
Funder
Aeronautical Science Foundation of China
National Natural Science Foundation of China
Subject
Mechanical Engineering,Aerospace Engineering