Reevaluating conceptual design fidelity: An efficient supersonic air vehicle design case

Author:

Allison Darcy L1,Morris Craig C1,Schetz Joseph A1,Kapania Rakesh K1,Watson Layne T2

Affiliation:

1. Aerospace & Ocean Engineering, Virginia Tech, Blacksburg, VA, USA

2. Science, Mathematics, Aerospace & Ocean Engineering, Virginia Tech, Blacksburg, VA, USA

Abstract

Multifidelity and multidisciplinary design optimization (MDO) results for an efficient supersonic air vehicle (ESAV) are presented. This work builds upon previous published work that created a multifidelity and multidisciplinary analysis and design optimization framework. Based on the usual aircraft conceptual design assumption that low-fidelity analyses are capable of converging upon a design through MDO that would at least be representative of that which would be predicted by higher fidelity methods, a process is created to allow low-fidelity multidisciplinary analysis runs to guide the higher fidelity optimization in an effort to reduce the total required computational expense. Due to disparate physical simulation results between the different fidelity levels, the expected reduction in computational effort was not realized. A separate low-fidelity optimization and a higher fidelity optimization were then subsequently performed. A MDO method that required an order of magnitude fewer objective function evaluations than the low-fidelity MDO method was developed to perform the more computationally expensive higher fidelity MDO in the full ESAV design space. Although optimal low-fidelity and higher fidelity ESAV configurations are identified, the low-fidelity optimal solution is infeasible when analyzed with the higher fidelity framework, and vice versa. This was a surprising and unexpected result as these two fidelity level model suites were developed by the same team for the same aircraft. The common assumption that low-fidelity MDO design methods will find a feasible design close to the eventual higher fidelity design did not hold for the ESAV case. Sensitivity studies were performed around the optimal design to gain insight into this important region of the design space with respect to the particular fidelity level models used.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3