Methodology to assess the performance of an aircraft concept with distributed propulsion and boundary layer ingestion using a parametric approach

Author:

Valencia Esteban A1,Nalianda Devaiah1,Laskaridis Panagiotis1,Singh Riti1

Affiliation:

1. Power and Propulsion Department, School of Engineering, Cranfield University, Bedford, UK

Abstract

The performance benefits of boundary layer ingestion in aircraft with distributed propulsion have been extensively studied in the past. These studies have indicated that propulsion system integration issues such as distortion and intake pressure losses could mitigate the expected benefits. This paper introduces and develops a methodology that enables the assessment of different propulsion system designs, which are optimized to be less sensitive to the effects of the aforementioned issues. The study models the propulsor array and main engine performance at design point using a parametric approach, and further at component level, the study focuses on identifying optimum propulsor configurations, in terms of propulsor pressure ratio and BL capture sheet height. At a system level, the study assesses the effects of splitting the thrust between the propulsor array and main engines. The figure of merit used in the optimization is the TSFC. The suitability of the concepts is further assessed using performance predictions for HTS electrical motors. For the purpose of this study, the NASA N3-X aircraft concept is selected as baseline configuration, where the different propulsion designs are tested. As the study focuses on performance assessment of the propulsion system, sizing implication issues and aircraft performance installations effects have not been included in the analysis. The results from the parametric analysis corroborated previous studies regarding the high sensitivity of the propulsion system performance to intake losses and BL inlet conditions. As the study found low-power consumption configurations at these operating conditions, this may be considered as a major issue. The system analysis from the study indicated that splitting the thrust between propulsors and main engines results in improved system efficiency with beneficial effects in fuel savings. When a 2% increase in intake pressure losses and a similar reduction in fan efficiency were assumed due to boundary layer ingestion, the study found an optimum configuration with 65% of thrust delivered by the propulsor array. To summarize, the present work built on past research further contributes to the field through the inclusion of the thrust split as a key variable in the propulsion system design. The thrust split, when introduced, enabled reduction of the detrimental effects of intake losses on the overall system performance. Additionally, as it reduces the power required for the propulsor array, it is expected to reduce the operating power of HTS and cooling systems and therefore improve the effectiveness of the concept.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multidisciplinary Optimization of Aircraft Aerodynamics for Distributed Propulsion Configurations;Applied Sciences;2024-09-03

2. Advancements and prospects of boundary layer ingestion propulsion concepts;Progress in Aerospace Sciences;2023-04

3. Aerodynamic optimization of the exhaust system of an aft-mounted boundary layer ingestion propulsor;International Journal of Numerical Methods for Heat & Fluid Flow;2022-12-15

4. Drag decomposition of a subsonic wing via a far-field, exergy-based method;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering;2022-10-13

5. Aerodynamic Performance of a Low-Speed Blended-Wing-Body Aircraft with Distributed Ducted Fans;Lecture Notes in Electrical Engineering;2022-08-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3