Approximate analytical solutions of an axially moving spacecraft appendage subjected to tip mass

Author:

Ghaleh P Bagheri1,Khayyat AA2,Farjami Y3,Abedian A1

Affiliation:

1. Aerospace Engineering Department, Sharif University of Technology, Tehran, Iran

2. Mechatronics Department, International Campus of Sharif University of Technology, Kish, Iran

3. IT Department, University of Qom, Qom, Iran

Abstract

Approximate solutions for vibrations of flexible beam-type appendages subjected to tip mass are studied while uniform and exponential profiles for arm deployment are simulated. Applying an equivalent dynamical system and following Lagrangian approach, the equations of motion of the system are derived as nonlinear ordinary differential equations (ODEs) (with time-varying coefficients), in which the effect of the tip mass can be considered as some nonlinearity added to the ‘no tip mass’ case dynamics. The approximate closed-form solutions are obtained through a novel methodology using a computer algorithm, in which the solutions of the ‘no tip mass’ case are expanded by imposing quadratic perturbations on the independent variable. The mean square of errors (MSEs) for the obtained approximate analytical solution is computed. Using this method, the amplitude and frequency of the arm response are presented by the algebraic equations, which help the parametric design of such systems. In addition, effects of tip mass as an indicator of nonlinearities added to the system dynamics, on the amplitude and frequency of the beam response, are investigated during arm deployment.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quasi-periodic vibration of an axially moving beam under conveying harmonic varying mass;Applied Mathematical Modelling;2023-11

2. Research of transverse dynamic oscillation for the piston in labyrinth compressor;Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering;2021-01-21

3. On the coupled dynamics of small spacecraft and elastic deployable appendages;Multibody System Dynamics;2016-06-14

4. On dynamic stiffness of spacecraft flexible appendages in deployment phase;Aerospace Science and Technology;2015-12

5. Effect of drive mechanisms on dynamic characteristics of spacecraft tracking-drive flexible systems;Journal of Sound and Vibration;2015-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3