Stagnation heat flux estimation in spherically blunt axisymmetric hypersonic models

Author:

Irimpan Kiran J1ORCID,Menezes Viren2

Affiliation:

1. Department of Mechanical Engineering, Adi Shankara Institute of Engineering and Technology, Kalady, Ernakulam, India

2. Department of Aerospace Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, India

Abstract

Hypersonic flows have high heat transfer rates, and their management is essential to avoid detrimental effects. Since accurate prediction and measurement of heat flux in hypersonic test facilities are complicated, heat flux at the stagnation point is mostly estimated using Fay and Riddell formulation with Newtonian tangential velocity gradient approximation. Although it is relatively accurate and reliable, some errors creep in due to incompetent modelling of the tangential velocity gradient. This article studies the applicability of Olivier's tangential velocity gradient formulation for a sphere in the estimation of stagnation heat flux for spherically blunt axisymmetric hypersonic models. Oliver’s estimation accurately models the tangential velocity gradient of spherically blunt axisymmetric hypersonic models as the heat flux estimates deviated only by approx. 2%–4% from the measured heat flux. A simplified model for tangential velocity gradient using Shock Standoff Distance and density ratio is also derived and tested for accuracy.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3