Affiliation:
1. Applied Mathematics and Statistics, University of California Santa Cruz, USA
Abstract
Airport runways and taxiways have been identified as a key source of system-wide congestion and delay in the over-strained commercial air traffic system. To combat this growing problem, we present a novel approach for taxiway scheduling and traversal. Aircraft must traverse a taxiway, represented by a graph, from gates to their respective runways and arrive at their scheduled times while adhering to safety separation constraints. We describe a combinatorial mixed-integer linear program to determine the push-back time windows, aircraft speeds, stopping times, and in particular, traversal paths for a given graph and an imposed flight schedule as part of a single optimization problem. Safety and scheduling constraints are made robust to probabilistic deviations from the prescribed schedule and aircraft motion, and multiple objective functions are considered to examine the trade-off between taxi times and the probability of safety separation violation. Several scenarios are presented to demonstrate improvements gained from the method and possible uses for this approach.
Subject
Mechanical Engineering,Aerospace Engineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献