Transitional flight equilibrium and performance study for the X-NMRL tail-sitter VTOL MAV

Author:

Tang Wei1ORCID,Song Bi-Feng1

Affiliation:

1. School of Aeronautics, Northwestern Polytechnical University, Xi’an, China

Abstract

An investigation on transitional flight equilibrium, performance analysis and parameter impacts is conducted in a conversion corridor, based on the proposed X-NMRL tail-sitter Vertical Takeoff and Landing Micro Air Vehicles (VTOL MAVs). Dependent on a propulsion model, aerodynamic model and physical control model, a nonlinear mathematical transitional model of the vehicle dynamics was constructed with consideration of the velocity, angle of attack, thrust, control surface deflection and pitching angle. The momentum theory and estimation method are applied to simulated propeller slipstream effects on aerodynamics, and an aerodynamic model for all regions of angles of attack and velocities is built. The nonlinear indefinite high-order dynamic model is solved by the improved Newton iteration algorithm. The corridor of the pitching angle or flight-path angle to the velocity reveals that the boundaries are mainly governed by the stalling performance, full throttle thrust and zero thrust, respectively. The performance corridor indicates different performance parameter variations under different conditions of steady climbing, cruising and descending states. Additionally, the performance for a steady transitional strategy can be illustrated to some extent. In terms of the parameter impacts, the increasing max propulsive power, supplied voltage, and decreasing total weight can widen the transitional corridor effectively, and the changes in the aerodynamics will only move the boundaries toward the same direction. These results will benefit transitional vehicle designs and control designs.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3