A novel phenomenological constitutive model for Ti-6Al-4V at high temperature conditions and quasi-static strain rates

Author:

Ashrafian Mohammad Mahdi1,Hosseini Kordkheili Seyed Ali1ORCID

Affiliation:

1. Department of Aerospace Engineering, Sharif University of Technology, Tehran, Iran

Abstract

Phenomenological constitutive modeling of Ti-6Al-4V at temperatures between 923 and 1023 K under 0.0005–0.05 s−1 quasi-static rates is studied based on a phenomenological approach. For this purpose, the Johnson–Cook constitutive model is revisited. At low temperature conditions under moderate to high strain rates, the material’s stress–strain curves are the most similar to power-law function. Contrary to this, at high temperature conditions under low to moderate strain rates, the saturation-type function well describes the stress–strain curves. On the other hand, it is illustrated that the Johnson–Cook constitutive model is feeble to predict the material’s behavior correctly. Accordingly, in this study, a viscoplastic temperature-dependent constitutive model is developed. The strain rate hardening as well as thermal softening of the developed model is the same as the Johnson–Cook model. But a temperature-dependent strain hardening function is proposed in which both the saturation-type and power-law hardening behaviors of the material are implemented. In comparison with the Johnson–Cook model, the new constitutive model’s fidelity in capturing the titanium behavior is depicted. At last, by considering an Arrhenius-type phenomenological constitutive model, it is noted that the developed constitutive model has the best correctness in predicting the Ti-6Al-4V stress–strain behavior at high temperature conditions under quasi-static rates.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3