Multi-objective surrogate model-based optimization of a small aircraft engine air-intake duct

Author:

Drężek Przemysław S12ORCID,Kubacki Sławomir2,Żółtak Jerzy1

Affiliation:

1. Aerodynamics Department, Center of Aviation Technologies, Łukasiewicz Research Network – Institute of Aviation, Warsaw, Poland

2. Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Institute of Aeronautics and Applied Mechanics, Warsaw, Poland

Abstract

Aviation industry is constantly striving for more efficient design processes in respect to optimal time, human and computational resources utilization. This implies a need for application of an approximation techniques enabling for fast responses generation with maintained level of results quality. This study focuses on an advancement of aerodynamic shape optimization process of a small aircraft engine intake system by introduction of a surrogate modelling step into the design loop. The multi-objective metamodel assisted optimization is carried out in order to reduce pressure losses along the engine intake duct and increase flow homogeneity at the engine compressor intake plane. Latin Hypercube Design method is utilized in order to sample the design space. A set of initial objective function evaluations is generated with application of Reynolds-averaged Navier–Stokes solver. The ensemble of samples is further used to train a Kriging-based surrogate model. The Efficient Global Optimization algorithm basing on the Expected Improvement function is employed to gradually increase the metamodel prediction quality by usage of sequential sampling technique. Finally, the optimal point predicted by the Kriging surrogate is validated against the high-fidelity model with usage of the Computational Fluid Dynamics code. The paper presents an application of the abovementioned methodology to the design process of the I-31T aircraft turboprop engine intake system. Proposed Kriging-based optimization workflow is utilized in order to reduce pressure losses and improve flow homogeneity in the engine air-intake duct.

Funder

Ministerstwo Nauki i Szkolnictwa Wyższego

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3