Single-lever control method design based on power management system and deep reinforcement learning for turboprop engines

Author:

Ji Run-Min1ORCID,Huang Xiang-Hua1,Zhang Xing-Long1ORCID,Li Ling-Wei1

Affiliation:

1. College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China

Abstract

This paper presents a single-lever control method based on Power Management System (PMS) and improved Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm for turboprop engines. In this approach, power level angle command, which is the single-lever command, is decoupled into controlled variable commands by PMS, and the controller based on improved TD3 algorithm can ensure that controlled variables track their commands rapidly and accurately. To achieve the optimal conversion relationship between different commands, an offline optimization process is used to design PMS. By optimization, specific fuel consumption and propeller efficiency are both improved after conversion. To deal with strong interactions between different control loops of a turboprop engine, TD3 algorithm which is a deep reinforcement learning algorithm is adopted. Two improvements which are the design method of observation state and prioritized experience replay are made to enhance the tracking accuracy. Simulation results show that improved TD3 algorithm can learn an optimal control policy to guarantee good control effect with fast response and small overshoot. The maximum settling time is less than 0.25s and the maximum overshoot is less than 0.1%. It also has a good robustness performance when the plant exists model uncertainties. The maximum fluctuations are less than 0.05%.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Reference30 articles.

1. Wu T. Europa eagle—a rounded analysis of the Europe large transportation aircraft A400M. Modern Weaponry 2008; (10): 19–30, [Chinese].

2. Introduction to advanced modeling and control of turbo-prop engines

3. Research on Power Regulation Schedule Control System for Turboprop Engine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3