Affiliation:
1. Fluid Dynamics Division, Applied Mechanics Department, Chalmers University of Technology, Sweden
Abstract
Establishing an optimal intercooled aeroengine constitutes a coupled problem where the conceptual design of the intercooler and the engine has to be considered simultaneously. The heat transfer and pressure loss characteristics will depend on the choice of the intercooler architecture. Hence, to be able to optimize the performance of an intercooled aeroengine, the performance characteristics of a given intercooler architecture has to be known in the parameter range anticipated for the aeroengine optimization. Here, the conceptual design of a tubular two-pass cross-flow intercooler architecture intended for a turbofan aeroengine application is presented. The internal flow is simulated applying a porous media model for the intercooler tubes, whereas the connecting ducts are analyzed with three-dimensional simulations allowing the assessment of a number of design solutions. The external flow is treated with two-dimensional simulations investigating the external pressure loss and heat transfer characteristics of the two elliptical tube stacks. The intercooler performance is then generalized by developing a reduced order correlation covering a parameter range anticipated for a turbofan conceptual design optimization. The paper constitutes a first effort to establish an open literature complete set of correlations for the prediction of aeroengine intercooler performance.
Subject
Mechanical Engineering,Aerospace Engineering
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献