Effect of flight/structural parameters and operating conditions on dynamic behavior of a squeeze-film damped rotor system during diving–climbing maneuver

Author:

Chen Xi1ORCID,Gan Xiaohua1,Ren Guangming1

Affiliation:

1. Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, China

Abstract

During aircraft maneuvering flights, engine's rotor-bearing systems are subjected to parametric excitations and additional inertial forces, which may cause severe vibration and abnormal operation. Based on Lagrange's principle combined with finite element modeling, the differential equations of motion for a squeeze film damped rotor-bearing system mounted on an aircraft in maneuvering flight are derived. Using Newmark–Hilber–Hughes–Taylor integration method, dynamic characteristics of the nonlinear rotor system under maneuvering flight are investigated. The factors are considered, involving mass unbalance, oil–film force, gravity, parametric excitations and additional inertial forces, and instantaneous static eccentricity of journal induced by maneuvering loads. The effects of forward velocity, radius of curvature, rotating speed, mass unbalance, oil–film clearance, and elastic support stiffness on transient responses of rotor system are discussed during diving–climbing maneuver. The results indicate that when the aircraft performs a diving–climbing maneuver in the vertical plane, the journal deviates from the center of oil–film outer ring, and the excursion direction of whirl orbit is determined by centrifugal acceleration and additional gyroscopic moment. The journal whirls asynchronously around the instantaneous static eccentricity and its magnitude is related to the maneuvering loads and the supporting stiffness. Increasing forward velocity or decreasing pitching radius, the rotor vibration will enter earlier into or withdraw later from the relatively large eccentricity. Rotating near critical speeds or excessive mass unbalances should be prevented during maneuvering flights. For large maneuver, the oil–film radial clearance needs to be enlarged properly to avoid hard contact between journal and outer ring. In addition, the stiffness of elastic support needs to be appropriately determined for damping performance. Overall, it provides a flexible approach with good expandability to predict dynamic characteristics of on-board squeeze-film damped rotor system during maneuvering flights in the design process.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3