Effect of constraints and vertical wall interaction on workspace of a quadcopter manipulator system

Author:

Sumathy Vidya1ORCID,Warier Rakesh R2,Ghose Debasish3ORCID

Affiliation:

1. Department of Aerospace Engineering, Indian Institute of Science, Bangalore, India

2. Electrical Engineering, National Institute of Technology, Calicut, India

3. Robert Bosch Centre for Cyberphysical Systems and Department of Aerospace Engineering, Indian Institute of Science, Bangalore, India

Abstract

The workspace analysis of a robotic arm coupled to an unmanned aerial vehicle executing close-to-target operations is significant. The workspace of a 3 degree-of-freedom manipulator mounted to the bottom of a quadcopter and having an extended workspace is analyzed in this research, along with a motion planning algorithm. The quadcopter manipulator system comprises a robotic arm attached to the quadcopter’s center of gravity at its bottom. The manipulator has an extended workspace as its end-effector can reach three-dimensional locations above and below the drone’s airframe. The arm’s workspace is determined by system kinematics. Certain factors like downwash from the drone, the robotic arm’s singularity, servo motor stall torques, and mechanical structure limit the arm’s workspace during real-time tasks. A detailed description of these factors and their impact on the arm’s reachable workspace is also provided. Based on these limitations, the motion planning algorithm verifies the viability of a specific arm configuration and, therefore, the feasibility of the task. A concept called the near-wall effect and strategies to limit its influence on aerial robots are presented to comprehend the effect of a wall on the system in tasks involving targets on a compound wall. The proposed research outcomes are evaluated using MATLAB and ROS/Gazebo simulations.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3