Integrated design of adaptive fault-tolerant control for non-minimum phase hypersonic flight vehicle system with input saturation and state constraints

Author:

Wang Le12,Qi Ruiyun12ORCID,Peng Zhiyu3

Affiliation:

1. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China

2. Key Laboratory of Navigation, Control and Health-Management Technologies of Advanced Aerocraft, Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China

3. School of Automation, Southeast University, Nanjing, China

Abstract

In this paper, for the six-degree-of-freedom (six-DOF) model of hypersonic flight vehicle (HFV) subject to actuator faults, state constraints, parametric uncertainties, and external disturbances, an adaptive fault tolerant control (FTC) scheme is proposed based on barrier Lyapunov functions (BLFs). The study is begun with a series of control-oriented manipulations: at first, due to the high complexity of the six-DOF model, the corresponding simplified model is proposed under reasonable assumptions; then, through the stability analysis of the internal dynamics, we can conclude that the vehicle model is a non-minimum phase system, namely, having unacceptable zero-dynamics. In order to solve the non-minimum phase problem, the elevator-to-lift coupling term is regarded as uncertainty of the model. Subsequently, in consideration of the insufficient control torque caused by the fault of the rudder or elevators, an adaptive fault-tolerant controller is designed based on BLFs, backstepping method, and Nussbaum gains. In the control law, the uncertain parameters are replaced by their estimates updated by adaptive laws. And the angle of attack and the roll angle of the aircraft are constrained in the preset range. Additionally, the convergence of the proposed FTC algorithm and the boundedness of all the signals of the closed system is proved by Lyapunov stability theory. At last, the numerical simulation results of the six-DOF model are carried out to manifest the effective tracking performance of the proposed FTC scheme.

Funder

National Natural Science Foundation of China

the Key International (Regional) Cooperative Research Projects of the National Natural Science Foundation of China

Interdisciplinary Innovation Fundation for Graduates, NUAA

Postgraduate Research and Practice Innovation Program of Jiangsu Province

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3