Affiliation:
1. Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
Abstract
This article presents a robust and computationally inexpensive technique of component-level fault detection in aircraft gas-turbine engines. The underlying algorithm is based on a recently developed statistical pattern recognition tool, symbolic dynamic filtering (SDF), that is built upon symbolization of sensor time series data. Fault detection involves abstraction of a language-theoretic description from a general dynamical system structure, using state space embedding of output data streams and discretization of the resultant pseudo-state and input spaces. System identification is achieved through grammatical inference based on the generated symbol sequences. The deviation of the plant output from the nominal estimated language yields a metric for fault detection. The algorithm is validated for both single- and multiple-component faults on a simulation test-bed that is built upon the NASA C-MAPSS model of a generic commercial aircraft engine.
Subject
Mechanical Engineering,Aerospace Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献