Gas turbine performance monitoring based on extended information fusion filter

Author:

Lu Feng12,Huang Yihuan1,Huang Jinquan1,Qiu Xiaojie3

Affiliation:

1. Jiangsu Province Key Laboratory of Aerospace Power Systems, College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, PR China

2. Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada

3. Aviation Motor Control System Institute, Aviation Industry Corporation of China,Jiangsu 214063, China

Abstract

Performance monitoring is a critical issue for gas turbine engine for improving the operation safety and reducing the maintenance cost. With regard to this, variants of Kalman-filters-based state estimation have been employed to detect gas turbine performance, but the classical centralized Kalman filters are subject to heavy computational effort and poor fault tolerance. A novel nonlinear fusion filter algorithm using information description with distributed architecture is proposed and applied to gas turbine performance monitoring. This methodology is developed from federated Kalman filter, and a bank of local extended information filters and one information mixer are combined with extended information fusion filter. The local state estimates and covariance calculated in parallel by the local extended information filters are integrated in the information mixer to yield a global state estimate. The global state estimate of nonlinear system is fed back to the local filters with weighted factor for next iteration. The aim of the proposed methodology is to reduce the computational efforts of state estimation and improve robustness to sensor faults in cases of gas turbine performance monitoring. The simulation results on a turbofan engine confirm the extended information fusion filter's effective capabilities in comparison to the general central ones.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3