Base drag estimation in suddenly expanded supersonic flows using backpropagation genetic and recurrent neural networks

Author:

Quadros Jaimon D1ORCID,Prashanth Thalambeti2,Khan Sher A2

Affiliation:

1. Fluids Group, Faculty of Mechanical Engineering, Istanbul Technical University, Gumussuyu, Istanbul, Turkey

2. Deptment of Mechanical Engineering, International Islamic University Malaysia, Jalan Gombak, Selangor, Malaysia

Abstract

In recent years, base pressure management has gained a lot of industrial importance due to its applications in missiles and projectiles. For certain aerodynamic vehicles, the base pressure becomes a critical factor in regulating the base drag. That prompted the current work to develop input–output relationships for a suddenly expanded flow process using experiments and neural network-based forward and reverse mapping. The objective of forward mapping (FM) is to predict the responses, namely base pressure (β), base pressure with cavity (βcav), and base pressure with rib (βrib), for a known combination of flow and geometric parameters, namely Mach number (M), nozzle pressure ratio (η), area ratio (α), and length to diameter ratio (ψ). On the other hand, an effort is made to decide the optimal set of flow and geometric parameters for achieving the desired base pressure by reverse mapping (RM). Neural network-controlled backpropagation and recurrent and genetic algorithms have been employed to carry out the forward and reverse mapping trials. A batch mode of training was employed to conduct a parametric study for adjusting and optimizing the neural network parameters. Due to the requirement of massive data for batch mode training, the data required for training was achieved using the response equations developed through response surface methodology. Further, the forecasting performances of the neural network algorithms are compared with the regression models (FM) and among themselves (RM) through random test cases. The findings indicate that all evolved neural network (NN) models could make accurate predictions in both forward and reverse mappings. The results obtained would help aerodynamic engineers control various parameters and their values that affect base drag.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3