Multi-objective trade-off analysis of an integrated cold gas propulsion system

Author:

Banazadeh Afshin1,Gol Hossein Abdollahi1

Affiliation:

1. Department of Aerospace Engineering, Sharif University of Technology, Iran

Abstract

The overall design of cold gas propulsion systems is pretty complicated when considering the mission requirements, operating constraints and functional limitations imposed by the mechanical components. To address this complication, a precise design process is proposed, which attempts to optimize the cost of operation as well as to minimize the waste volume and weight by using multi-objective trade-off analysis. This analysis is based on a set of ordinary differential equations that are solved iteratively to describe the optimal behavior of the system. Therefore, a numerical code is being developed to give insight on the design sensitivity with respect to uncertainties on the design variables. Consequently, the most favorite operating media, nozzle inlet pressure and tank charging pressure are determined. Moreover, the advantages of electric heater for the storage tank are studied for a specified mission. A three-dimensional computational fluid dynamics analysis is employed to accurately simulate the flow conditions inside the nozzle. The accuracy of the simulation is verified by correlation with experimental results obtained from a non-vacuum test set-up. The experimental results have revealed acceptable performance and agreement with the simulation, within 7% in error.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Reference18 articles.

1. Ley W, Wittmann K, Hallmann WHandbook of space technology2009LondonJohn Wiley & Sons, Ltd301–331

2. Sonntag RE, Borgnakke C, Van Wylen GJFundamentals of thermodynamics20086th edNew YorkJohn Wiley & Sons564–604

3. Viscous effects on the flow coefficient for a supersonic nozzle

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluating the necessity of application of partial slip formulations to micro-nozzles operating under marginally rarefied flow regimes;2ND INTERNATIONAL CONFERENCE ON MATHEMATICAL TECHNIQUES AND APPLICATIONS: ICMTA2021;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3