Trajectory-shaping guidance based on optimality formulation for cooperative attack of multiple interceptors

Author:

Kim Hyeong-Geun1,Shin Jongho2ORCID

Affiliation:

1. Department of Mechanical Engineering, Incheon National University, Incheon, Korea

2. School of Mechanical Engineering, Chungbuk National University, Cheongju, Korea

Abstract

In this study, we present an optimal guidance structure that achieves impact angle and time constraints for the salvo attack of multiple missiles. As the first step in deriving a guidance law, we define a desired profile of the look angle that satisfies the impact angle and time constraints using a polynomial function of the relative range. The guidance command is configured based on the optimality formulation that achieves the desired profile of the look angle while minimizing the usage of the normal acceleration. The resulting trajectory under the proposed law is expressed as a polynomial form whose exponents can be selected to satisfy the desired constraints with the impact courses of various curvatures. In addition, the proposed law can achieve a wide range of terminal constraints since the time-to-go, which is difficult to estimate for a trajectory with a small radius of curvature, is not required for implementation. The numerical simulation results show that the proposed law achieves precise interception under various terminal conditions, validating the proposed law.

Funder

Defense Acquisition Program Administration

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3