A force equalization controller for active/active redundant actuation system involving servo-hydraulic and electro-mechanical technologies

Author:

Wang Lijian1,Maré Jean-Charles1

Affiliation:

1. ICA, INSA-UPS, University of Toulouse, Toulouse, France

Abstract

The force equalization of a hybrid actuation system combining one servo-hydraulic actuator and one electro-mechanical actuator operated in position control and in active/active mode is addressed for safety critical applications such as primary flight controls. In a first step, an accurate virtual test bench is built to facilitate the analysis of force fighting and the assessment of the performance and robustness of the proposed force equalization strategies. It is validated from real experiments performed for the aileron actuator of a single-aisle commercial aircraft. Static force equalization is achieved first by adding equalization offsets in the position control loops as a function of the integral of the force difference between actuators. In order to keep a high level of segregation, the authority for this action is limited to 4% of the total actuator stroke. The dynamic force equalization is performed by forcing the two actuators to follow the same path. Thus, a trajectory generator is introduced to output the required position, velocity and acceleration from the position set point with realistic reproduction of the actuator power limits. Feedforward actions are used to compensate the major and invariant effects such as servo-hydraulic actuators functional flow and electro-mechanical actuator inertial torque. In this way, the pursuit errors are significantly reduced without decreasing robustness. Then, the accurate virtual test bench is used to assess the robustness of the force equalization strategy by analyzing the sensitivity of performance indicators to parameters and operating conditions. It is shown that the proposed force equalization scheme meets all the requirements, including segregation, robustness and simplicity.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3