Experimental investigation into the aerodynamic and aeroacoustic performance of bioinspired small-scale propeller planforms

Author:

Moslem Foad1ORCID,Masdari Mehran1ORCID,Fedir Kirchu2,Moslem Behzad3

Affiliation:

1. Experimental Aerodynamic and Aeroacoustic Laboratory, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran

2. Aviation Engines Department, National Aviation University, Kyiv, Ukraine

3. Faculty of Industrial Engineering, Islamic Azad University Science and Research Branch, Tehran, Iran

Abstract

The multi-rotors have a limited operational period and generate too much noise, which is insufficient for complex tasks and adversely affects humans’ and animals’ health. Nevertheless, their market has become increasingly popular. Therefore, low-noise products are more competitive, and aerodynamic and acoustic improvements are critical. This investigation aims to design a small bioinspired propeller with the same power input as a conventional propeller to achieve the same or better aerodynamic performance while decreasing noise. Accordingly, an experiment investigated the impacts of operation conditions and varied geometric parameters on six small propellers' aeroacoustic performances with a unique planform shape inspired by five insects and one plant seed, such as Blattodea, Hemiptera, Hymenoptera, Neuroptera, Odonata, and maple seed. Each propeller was operated at eleven rotational speeds ranging from 3000 to 8000 RPM with no freestream velocity for simulating hover conditions. Compared to the baseline propeller, the results demonstrate that all bioinspired propellers produce more thrust for the same power supply, reduce harmonic and broadband noise, and provide a better noise level. Also, their rotational speed is lower and their figure of merit is higher than the baseline propeller at hover flight with 3N thrust. They all outperform the baseline propeller in terms of hover efficiency at all thrust values considered. Besides, the Neuroptera propeller is more efficient than other propellers, decreasing 5.5 W of power and reducing 7.9 dBA at hover flight with 3N thrust and 1.5 meters distance, compared to the baseline propeller.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Reference24 articles.

1. McKay RS, Kingan MJ. Multi-rotor unmanned aerial system noise: quantifying the motor’s contribution. In: 24th Acoustical Society of New Zealand Conference, 1, New Zealand, 2018.

2. Predicting Community Noise of sUAS

3. Experimental Study of Quadcopter Acoustics and Performance at Static Thrust Conditions

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3