Affiliation:
1. Experimental Aerodynamic and Aeroacoustic Laboratory, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
2. Aviation Engines Department, National Aviation University, Kyiv, Ukraine
3. Faculty of Industrial Engineering, Islamic Azad University Science and Research Branch, Tehran, Iran
Abstract
The multi-rotors have a limited operational period and generate too much noise, which is insufficient for complex tasks and adversely affects humans’ and animals’ health. Nevertheless, their market has become increasingly popular. Therefore, low-noise products are more competitive, and aerodynamic and acoustic improvements are critical. This investigation aims to design a small bioinspired propeller with the same power input as a conventional propeller to achieve the same or better aerodynamic performance while decreasing noise. Accordingly, an experiment investigated the impacts of operation conditions and varied geometric parameters on six small propellers' aeroacoustic performances with a unique planform shape inspired by five insects and one plant seed, such as Blattodea, Hemiptera, Hymenoptera, Neuroptera, Odonata, and maple seed. Each propeller was operated at eleven rotational speeds ranging from 3000 to 8000 RPM with no freestream velocity for simulating hover conditions. Compared to the baseline propeller, the results demonstrate that all bioinspired propellers produce more thrust for the same power supply, reduce harmonic and broadband noise, and provide a better noise level. Also, their rotational speed is lower and their figure of merit is higher than the baseline propeller at hover flight with 3N thrust. They all outperform the baseline propeller in terms of hover efficiency at all thrust values considered. Besides, the Neuroptera propeller is more efficient than other propellers, decreasing 5.5 W of power and reducing 7.9 dBA at hover flight with 3N thrust and 1.5 meters distance, compared to the baseline propeller.
Subject
Mechanical Engineering,Aerospace Engineering
Reference24 articles.
1. McKay RS, Kingan MJ. Multi-rotor unmanned aerial system noise: quantifying the motor’s contribution. In: 24th Acoustical Society of New Zealand Conference, 1, New Zealand, 2018.
2. Predicting Community Noise of sUAS
3. Experimental Study of Quadcopter Acoustics and Performance at Static Thrust Conditions
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献