Improving turbine endwall cooling uniformity by controlling near-wall secondary flows

Author:

Thomas Mitra1,Povey Thomas1

Affiliation:

1. Department of Engineering Science, University of Oxford, Oxford, UK

Abstract

In this paper, we propose a design philosophy for cooling high-pressure nozzle guide vane endwalls, which exploits the momentum of cooling jets to control vane secondary flows thereby improving endwall cooling uniformity. The impact of coolant-to-mainstream pressure ratio, hole inclination angle, hole diameter, vane potential field, and overall mass flux ratios are considered. Arguments are developed by examining detailed experimental studies conducted in a large-scale low-speed cascade tunnel with engine-realistic combustor geometry and turbulence profiles. Computational fluid dynamics predictions validated by the same are used to extend the parameter space. We show that the global flow field is highly sensitive to the inlet total pressure profile, which in turn can be modified by introducing relatively low mass flow rates of cooling gas at engine realistic coolant-to-mainstream pressure ratios and mass flux ratios. This interaction effect must be understood for successful design of optimised endwall cooling schemes, an effect which is not sufficiently emphasized in much of the literature on this topic. Design guidelines are given that we hope will be of use in industry.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3