Conceptual study of a dual-rocket-based-combined-cycle powered two-stage-to-orbit launch vehicle

Author:

Zhang Fan1,Zhang Huiqiang1,Wang Bing1

Affiliation:

1. School of Aerospace Engineering, Tsinghua University, Beijing, China

Abstract

The liquid oxygen/methane staged cycle liquid-rocket engine is one of the most potential rocket engines in the future for its higher performance, higher fuel density and reusable capacity. Two working states of this liquid-rocket engine named as full-load state and half-load state are defined in this paper. Based on this liquid-rocket engine, a dual-rocket-based-combined-cycle propulsion system with liquid oxygen /air/methane as propellants is therefore proposed. The dual-rocket-based-combined-cycle system has then five working modes: the hybrid mode, pure ejector mode, ramjet mode, scramjet mode and pure rocket mode. In hybrid mode, the booster and ejector rockets driven by the full-load liquid-rocket engine work together with the purpose of reducing thrust demand on ejector rocket. In scramjet mode, the fuel-rich burned hot gas generated by the half-load liquid-rocket engine is used as fuel, which is helpful to reduce the technical difficulty of scramjet in hypersonic speed. The five working modes of dual-rocket-based-combined-cycle are highly integrated based on the full- or half-load state of the liquid oxygen/methane staged cycle liquid-rocket engine, and the unified single type fuel of liquid methane is adopted for the whole modes. Then a preliminary design of a horizontal takeoff two-stage-to-orbit launch vehicle is conducted based on the dual-rocket-based-combined-cycle propulsion system. Under an averaged baseline thrust and specific impulse, the launch trajectory to reach a low Earth orbit at 100 km is optimized via the pseudo-spectral method subject to maximizing the payload mass. It is shown that the two-stage-to-orbit vehicle based on the dual-rocket-based-combined-cycle can achieve the payload mass fraction of 0.0469 and 0.0576 for polar mission and equatorial mission, respectively. Conclusively, insights gained in this paper can be usefully applied to a more detailed design of the dual-rocket-based-combined-cycle powered two-stage-to-orbit launch vehicle.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sea-Level Static Tests of Rocket–Ramjet Combined Cycle Engine Model;Journal of Propulsion and Power;2021-05

2. The overall layout of rocket-based combined-cycle engines: a review;Journal of Zhejiang University-SCIENCE A;2019-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3