Solar sail structural analysis via improved finite element modeling

Author:

Boni Luisa1,Mengali Giovanni1,Quarta Alessandro A1

Affiliation:

1. Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy

Abstract

Despite the existence of many studies about the structural analysis of a square solar sail, the need for obtaining reliable numerical results still poses a number of practical issues to be solved. The aim of this paper is to propose a new method that improves the existing analysis techniques. In this sense, the solar sail is modeled using distributed sail-boom connections, and its structural behavior in free flight is studied, using the inertia relief method, at different incidence angles of the incoming solar radiation. The proposed approach is able to circumvent the onset of numerical convergence problems by means of suitable strategies. A nonlinear analysis is carried out starting from an initial geometrical configuration in which the whole solar sail is perturbed using a linear combination of the first global buckling modes, obtained with a static eigenvalue analysis. Key points of the procedure are the application of a correct sail pre-stress, a clever choice of the type of elements to be used in the finite element analysis and the use of a suitable mesh refinement. The performance of the new approach have been successfully tested on square solar sails with side length varying from relatively small to medium-to-large sizes, in the range of 10–100 m. A detailed analysis is presented for a reference 20 m × 20 m square solar sail, where the paper shows that the suggested procedure is able to guarantee accurate results without the need of additional stabilization technique. In particular, the vibration global mode shapes and frequencies of the solar sail are correctly described even in presence of unsymmetrical loading conditions. In other terms, the numerical analysis is completed without any convergence problem and any disturbing local modes.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3