Systematic reduced order model development of a pitching NACA0012 airfoil

Author:

Mohrfeld Halterman Jaclynn12,Uddin Mesbah1ORCID

Affiliation:

1. Department of Mechanical Engineering and Engineering Science, University of North Carolina, Charlotte, NC, USA

2. Simulation Manager, Pratt & Miller Engineering, Huntersville, NC, USA

Abstract

Simple reduced order models (ROMs) for the aerodynamic coefficients - lift, drag, and pitch moment - of a pitching NACA0012 airfoil are presented. The ROMs are designed for quick computation of the transient aerodynamic characteristics of the airfoil and are developed utilizing computational fluid dynamics (CFD) simulation results. The entire aerodynamic system is modeled as a single input, multi output system yielding three independent systems to be characterized. A systematic, two step process is employed to develop the ROMs for each aerodynamic system. First, a CFD simulation is conducted to determine the linearity of each system, and any nonlinear system is restructured as a nonlinear operator followed by a linear system to allow for the use of linear system identification techniques. A second CFD simulation is conducted to determine the frequency response of each linear system, and the coefficients of each ROM are extracted by fitting a second order model to each frequency response function. The ROMs are validated against an independent CFD simulation of a pitching airfoil and are shown to accurately model each aerodynamic coefficient.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unsteady aerodynamics of plunging cambered foil at low Reynolds number;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering;2022-06-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3