Effect of temperature on the dynamic performance of C/C composite finger seal

Author:

Wang Li-Na1,Chen Guo-Ding1,Su Hua1,Lu Fei1,Zhang Yan-Chao2

Affiliation:

1. School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an, People’s Republic of China

2. School of Mechanical Instrumental Engineering, Xi’an University of Technology, Xi’an, People’s Republic of China

Abstract

The designs of sealing device have prominent influence on the performance of aero-engine. The high temperature environment during the working process of aero-engine also has important influence on the performance of sealing device which is located in the aero-engine. Finger seal has a flexible characteristic and high price performance compared with the other seal devices, thus it gets more attention, and lots of researchers have studied about finger seal’s performance recently. But so far the dynamic performance of finger seal considering temperature effect is not yet analyzed and discussed. Based on this, an equivalent dynamic model based on distributed mass considering temperature effect is proposed in the paper. The effects of environment temperature and heat through friction on the equivalent structural stiffness of finger stick and contact pressure between finger stick and rotor are discussed. Moreover, the data exchange between the dynamic and thermal analysis is confirmed based on the movement relationship between the rotor excitation and finger stick response. Therefore, the dynamic performance analysis of finger seal including thermal-structure coupling is obtained based on an equivalent dynamic method. The effect of temperature on the dynamic performance of finger seal using this model is analyzed, and the effect of C/C composite structural parameters on the finger seal performance is investigated considering the temperature effect. The above results show that the temperature effect has important influence on the performance of finger seal, so it is necessary to consider the temperature effect when the performance of finger seal is analyzed. The current work further improves the theoretical system about finger seal equivalent dynamic research, and has higher academic significance and engineering value.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3