Affiliation:
1. Departamento de Engenharia Mecânica, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
2. INEGI – Pólo FEUP, Porto, Portugal
Abstract
Adhesive bonding is a predominant bonding technique in the aeronautical and automotive industries. Cohesive zone models, used together with the finite element method, are a viable tool to predict the strength of adhesive joints. The main objective of this study is to evaluate experimentally and numerically (by cohesive zone model) the mechanical performance of carbon-fiber reinforced polymer stepped-lap bonded joints submitted to tensile loads, for different overlap lengths ( LO) and adhesives. The failure mode analysis showed a predominant failure type for all adhesives and good correspondence with the numerical predictions. Normalized peel ( σy) and shear ( τxy) stresses in the adhesive highly increased with LO, which then reflected on different maximum load ( Pm) evolution with LO, depending on the adhesive's ductility. The damage variable SDEG (stiffness degradation) was also evaluated and emphasized on the smaller damage zone at Pmfor the brittle adhesive. A significant geometry and material effect were found on Pmof the stepped-lap joints, with benefit for large LO. In this regard, cohesive zone model revealed to be a suitable tool in determining the behavior of different joints. Comparison with joints with aluminum showed that, provided that no carbon-fiber reinforced polymer delamination occurs, stepped-lap joints between carbon-fiber reinforced polymer adherends give better results due to the higher composite stiffness.
Subject
Mechanical Engineering,Aerospace Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献