An integral sliding mode controller based disturbances rejection compound scheme for inertially stabilized platform in aerial remote sensing

Author:

Zhou Xiangyang1,Jia Yuan1,Li Yong1

Affiliation:

1. School of Instrumentation Science & Opto-electronics Engineering, Beihang University, Beijing, China

Abstract

An integral sliding mode controller based disturbance rejection compound scheme is proposed to attenuate the influences of nonlinear disturbances and parameter uncertainties on stability accuracy of the three-axis inertially stabilized platform for the aerial remote sensing applications. The compound scheme is composed of an integral sliding mode controller and a disturbance measurement unit. The integral sliding mode controller is used to ensure robust stability against exterior nonlinear disturbances and parameter uncertainties, in which the saturation function is employed to reduce the chattering. The disturbance measurement unit is served as the disturbance measurement components of the rate loop and current loop of three closed-loop structure in the inertially stabilized platform control system, by which the interior high-frequency disturbances are compensated in real time. To verify the method, simulations and experiments are conducted. In simulations, the LuGre friction model is introduced to analyze the effects of disturbances. Further, a series of experiments are carried out. The results show that the compound scheme has excellent ability in both of disturbances rejection and robust stabilization, by which the stability accuracy of the inertially stabilized platform is improved significantly.

Funder

the China Scholarship Council

the National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3