Effect of leaned blades on the aerodynamic performance of contra-rotating open rotor

Author:

Wang Qihang1,Zhou Li12ORCID,Wang Zhanxue1

Affiliation:

1. School of Power and Energy, Northwestern Polytechnical University, Xi’an, China

2. Collaborative Innovation Center for Advanced Aero-Engine, Beijing, China

Abstract

The contra-rotating open rotor (CROR) engine has gained attention for its outstanding fuel-saving potential. Attention needs to be paid to the propulsion efficiency of the contra-rotating open rotor, as it is the key to realizing the engine’s fuel-saving advantage. In this paper, the performance of CRORs with different lean angles is investigated by numerical simulation. Furthermore, the mechanism of the influence of leaned blades on the propulsion efficiency of the CROR is analyzed. The results show that the positive leaned blades (pressure-surface down) significantly improve the propulsion efficiency of the CROR, with a maximum improvement of 1.34%. In contrast, the negative leaned blades (suction surface down) reduce propulsion efficiency. Due to the radial equilibrium equation, the positive lean increases the radial pressure gradient. The increased gradient enhances flow on the suction surface and reduces the flow reversal region, thus improving the propulsion efficiency. At low advance ratios, the enhanced radial flow due to the leaned blades makes the optimization less effective. By comparing the inlet conditions of the front and rear rotors, it was found that the front rotor was less likely to have a flow reversal region compared to the rear rotor. If a flow reversal region occurs in the channel, it is necessary to introduce leaned blades. The most recommended lean angle is the one that makes the flow reversal region disappear exactly.

Funder

National Science and Technology Major Project

Science Center for Gas Turbine Project

Funds for Distinguished Young Scholars of Shaanxi Province

National Natural Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3