Flight control clearance of the Cessna Citation X using evolutionary algorithms

Author:

Boughari Yamina1,Botez Ruxandra Mihaela1,Ghazi Georges1,Theel Florian1

Affiliation:

1. ETS, Laboratory of Active Controls, Avionics and AeroServoElasticity LARCASE, Montreal, Quebec, Canada

Abstract

In this paper, an Aircraft Research Flight Simulator equipped with Flight Dynamics Level D (highest level) was used to collect flight test data and develop new controller methodologies. The changes in the aircraft’s mass and center of gravity position are affected by the fuel burn, leading to uncertainties in the aircraft dynamics. A robust controller was designed and optimized using the H method and two different metaheuristic algorithms; in order to ensure acceptable flying qualities within the specified flight envelope despite the presence of uncertainties. The H weighting functions were optimized by using both the genetic algorithm, and the differential evolution algorithm. The differential evolution algorithm revealed high efficiency and gave excellent results in a short time with respect to the genetic algorithm. Good dynamic characteristics for the longitudinal and lateral stability control augmentation systems with a good level of flying qualities were achieved. The optimal controller was used on the Cessna Citation X aircraft linear model for several flight conditions that covered the whole aircraft’s flight envelope. The novelty of the new objective function used in this research is that it combined both time-domain performance criteria and frequency-domain robustness criterion, which led to good level aircraft flying qualities specifications. The use of this new objective function helps to reduce considerably the calculation time of both algorithms, and avoided the use of other computationally more complicated methods. The same fitness function was used in both evolutionary algorithms (differential evolution and genetic algorithm), then their results for the validation of the linear model in the flight points were compared. Finally, robustness analysis was performed to the nonlinear model by varying mass and gravity center position. New tools were developed to validate the results obtained for both linear and nonlinear aircraft models. It was concluded that very good performance of the business Cessna Citation X aircraft was achieved in this research.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3