Numerical estimation of longitudinal damping derivatives of a flying wing micro aerial vehicle

Author:

Shams Taimur A1ORCID,Shah Syed Irtiza Ali1,Shahzad Aamer1ORCID,Mehmood Kashif1

Affiliation:

1. Department of Aerospace Engineering, National University of Sciences and Technology, Islamabad, Pakistan

Abstract

Longitudinal damping derivatives, [Formula: see text], of an aerial vehicle is important from an aerodynamic stability point of view. Experimental calculation of longitudinal damping derivatives using wind tunnel is not a cost-effective method; therefore, researchers have developed numerical solutions as an alternative. In this research, the longitudinal damping derivatives of a flying wing micro aerial vehicle (FWMAV) were calculated using numerical simulations by adopting pull-up maneuver and forced harmonic motion in pitch axis. Pull-up maneuver with four steady rotational rates was simulated to obtain pitch rate derivative, C mq. Combined derivative, [Formula: see text], was obtained by simulating forced harmonic motion of FWMAV around a mean angle of attack of 0° with amplitude of oscillation of ± 3° using four reduced frequencies (0.02, 0.03, 0.04, and 0.05). Unstructured surface and volume mesh was used in a spherical domain engulfed inside a large cuboid domain for moving reference frame strategy. Reynolds number taking mean aerodynamic chord as a reference length was 2.33 × 105. Spalart–Allmaras turbulence model was used. Pitch rate derivative, combined derivative, and acceleration derivative were found as − 0.03/rad, − 7.39/rad, and − 7.36/rad, respectively, by the use of a phase method at a reduced frequency of 0.03. During flight dynamic analysis, it was found that [Formula: see text] has a significant contribution on damping in short period mode with no effect on Phugoid mode. The research concluded that for tailless configurations, acceleration derivative [Formula: see text] can exist and can provide necessary damping in the longitudinal flight mode.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3