Research on the flame structure characteristics and NOx pathways of low swirl combustion

Author:

Cao Zhibo1ORCID,Xiao Yinli1,Ming Xin1,Song Wenyan1

Affiliation:

1. School of Power and Energy, Northwestern Polytechnical University, Xi’an, China

Abstract

Low swirl combustion (LSC) technology has the advantage of ultralow NOx emissions, which is of great significance to the development of low-emission gas turbine engines in the future. To investigate the flow field and flame structure characteristics of LSC, a test rig of low swirl burner was designed and developed. Particle image velocimetry measurement results show that the location and size of the recirculation zone are different, and the flow field shows typical “W”- and “U”-shaped distributions under various swirling flow conditions. The self-luminous results of LSC show that there are three flame modes including attached flame, “W”-shaped flame, and “U”-shaped flame. To deeply understand NOx generation pathways, a chemical reactor network model was developed based on experiments and computational fluid dynamics simulations, and the effects of premixed gas components on NOx pathways were calculated by using Chemkin software. It was verified that the NOx production of the CH4 mixture mixed with H2, N2, and CO2 was mainly formed by the thermal NO pathway in the recirculation zone. The increase of H2 promotes the generation of NNH-type NOx in the main flame zone and inhibits prompt NOx. The addition of N2 and CO2 greatly promotes the generation of prompt NOx and at the same time inhibits NNH-type NOx. In addition, there is little prompt NOx formation in the post-flame zone.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3