Research on lateral-directional stability augmentation system of flying wing aircraft based on reliability model

Author:

Pan Yalin1ORCID,Huang Jun1

Affiliation:

1. School of Aeronautic Science and Engineering, Beihang University, Beijing, China

Abstract

Poor lateral-directional stability is a great risk to the design of flying wing aircraft due to the absence of vertical stabilizer. In order to improve the lateral-directional flying quality of this configuration aircraft, eigenstructure assignment technique by state feedback is adopted to design the stability augmentation system. The influence of eigenstructure on energy consumption of the control system is analyzed by citing energy consumption index in this paper. In addition, a reliability model is established to measure the reliability of the control system under uncertain factors. In order to assign eigenvalues and eigenvectors to obtain the control law of the system, a nested optimization model based on coupling degree, energy consumption and reliability is proposed. The outer optimization is used to optimize the eigenstructure, and inner optimization is used to compute the reliability of the control system in optimization process. A flying wing aircraft is used as a basis for the design of the stability augmentation system through the suggested optimization strategy. The optimization results demonstrate the validity of the method, and the lateral-directional flying quality of the aircraft has been improved greatly.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review of Control Methods for Tailless Aircraft;Guidance, Navigation and Control;2024-08-30

2. Model-Reference Sliding Mode Fault Tolerant Control of a Scale Model HALE UAV;2023 8th International Conference on Instrumentation, Control, and Automation (ICA);2023-08-09

3. Simulator Assessment of the Lateral-Directional Handling Qualities of the Flying-V;AIAA SCITECH 2023 Forum;2023-01-19

4. Robust Non-Linear Dynamic Inversion Control System to Improve Stability of Large Aircraft in Crosswind;2021 Seventh International Conference on Aerospace Science and Engineering (ICASE);2021-12-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3