Evaluation of generalized k-ω turbulence model in strong separated flow estimation of thrust optimized parabolic nozzle

Author:

Afkhami Sina1,Fouladi Nematollah2ORCID,PasandidehFard Mahmoud1ORCID

Affiliation:

1. Department of Aerospace Engineering, Ferdowsi University of Mashhad, Iran

2. Departtment of Space Propulsion, Space Transportation Research Institute, Tehran, Iran

Abstract

One of the frequently reported defects of RANS-based turbulence models is overestimation of turbulent kinetic energy production in high speed separated flow problems, which causes significant prediction errors. The correct estimation of such flow in thrust optimized parabolic nozzles extremely depends upon the accurate prediction of the onset of flow separation. In this paper, firstly, the significant error of conventional RANS-based turbulence models is shown to predict the onset of flow separation in this type of nozzles. Then, the prediction accuracy is improved through the modification of the essential parameters of the generalized k-ω (GEKO) turbulence model. It was found that modifying the separation and mixing parameters of the GEKO model to realize the turbulent kinetic energy production resulted in the accurate prediction of onset of flow separation at the extensive range of nozzle pressure ratios. Using this modified model with new coefficients reduced the error of about 30% of the k-ω-sst model in estimating the onset of flow separation. Also, the nozzle pressure value at which the transition from free shock separation (FSS) to restricted shock separation (RSS) occurs is well predicted by this approach. After strengthening the turbulence model, the flow physics has been investigated with increasing and decreasing nozzle chamber pressure. The length of the separation shock and reflected shock waves which impose the presence of FSS or RSS patterns and transitional phenomena are discussed. Our new findings show that unlike the transition from FSS to RSS, the inverse transition from RSS to FSS did not depend on the length of the separation and reflective shocks.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3