Modeling of unsteady aerodynamic characteristics at high angles of attack

Author:

Hao Dong1,Zhang Lin1,Yu Jing2ORCID,Mao Daiyong1

Affiliation:

1. High Speed Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang, People’s Republic of China

2. Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang, People’s Republic of China

Abstract

An improved model to express the unsteady aerodynamic characteristics at high angles of attack is presented in this paper. The proposed aerodynamic model is expressed on the basis of a progressive state-space representation and Taylor’s series expansion. The state-space expression is a first-order differential equation in which the power item of the angular rate of attack is introduced. The unsteady aerodynamic coefficients are described by Taylor’s series expansion in terms of input variables. The approach of minimum mean square error criterion is utilized to identify the unknown parameters of the proposed model by nonlinear least square method from the tunnel data. The given modeling method is experimentally demonstrated by the wind tunnel measurements of NACA 0015 airfoil with constant rate to high angles of attack, F18 aircraft with constant pitch rate ramp motion, and F18 HARV (high alpha research vehicle) configuration with large-amplitude harmonic oscillatory. The results show that it is possible to analyze more complex unsteady aerodynamic problems for an aircraft within the framework of the proposed aerodynamic model and the represented model is directly amenable to the simulation and control system design.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3