Thermal analysis of space debris for infrared-based active debris removal

Author:

Yılmaz Özgün1ORCID,Aouf Nabil1,Checa Elena2,Majewski Laurent3,Sanchez-Gestido Manuel2

Affiliation:

1. Department of Electronic Warfare, Cranfield University, UK

2. ESTEC, European Space Agency, The Netherlands

3. Architects and Optronic Systems, SODERN, France

Abstract

In space, visual-based relative navigation systems suffer from dynamic illumination conditions of the target (eclipse conditions, solar glare, etc.) where most of these issues are addressed by advanced mission planning techniques. However, such planning would not be always feasible or even if it is, it would not be straightforward for active debris removal missions. On the other hand, using an infrared-based system would overcome this problem, if a guideline to predict infrared signature of space debris based on the target thermal profile could be provided for algorithm design and testing. Spacecraft thermal design is unique to every platform. This means every active debris removal target will have a different infrared signature, which changes over time not just only due to orbital dynamics but also due to its thermal surface coatings. In order to provide a space debris infrared signature guideline for most of the possible active debris removal targets, we introduce an innovative grouping system for thermal surface coatings based on their behaviour in space environment. Through the use of this grouping system, we propose a space debris infrared signature estimation method, which was extensively verified by our simulations and experiments. During our verifications, we have also discovered very important problem so-called ‘signature ambiguity’ that is unique to infrared-based active debris removal systems, which we have also discussed in our work.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3