Experimental investigation on the flame stabilization modes of liquid kerosene in a cavity-based scramjet combustor

Author:

Li Xipeng1ORCID,Liu Weidong1,Pan Yu1,Wang Ning1

Affiliation:

1. Science and Technology on Scramjet Laboratory, National University of Defense Technology, Changsha, China

Abstract

The flame stabilization modes of liquid kerosene is investigated in a model scramjet combustor with flight condition of Ma 6. The effects of equivalence ratio and cavity configuration schemes on the flame stabilization modes are studied. Flame propagations and the evolution of the flow field from the ignition to the establishment of stable flame in the supersonic flow are acquired through high-speed photography and schlieren photography. Only cavity-recirculation-region stabilized combustion can be obtained in the single-cavity scramjet combustor. The intensity of combustion is weak and is termed as local ignition with low combustion efficiency. In the tandem-cavity scramjet combustor, the flame stabilization mode is largely determined by the total equivalence ratio. The flame could spread into the mainstream and even propagate against the supersonic flow as the equivalence ratio increases. The positive feedback mechanism between combustion and precombustion shock train is responsible for the evolutions of the flame stabilization modes, where the interactions between shock waves and turbulent boundary layer play a key role in the flame propagation process. The large-scale eddies in the shear layer of the upstream cavity shed at the cavity aft wall and could enhance the turbulent levels of the incoming flow of the downstream cavity. Consequently, an intense kerosene flame can be ignited in the tandem-cavity combustor. The flame could not spread to the mainstream in the single-cavity combustor due to the lower turbulence level weakening the interaction of combustion products in the recirculation zone with unburned reactants in the supersonic flow.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Implication of injection angle and jet-to-cross flow ratio on the combustion characteristics of a scramjet combustor;Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering;2024-05-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3