Model predictive orbit control of a Low Earth Orbit satellite using Gauss’s variational equations

Author:

Tavakoli MM1,Assadian N1

Affiliation:

1. Department of Aerospace Engineering, Sharif University of Technology, Tehran, Iran

Abstract

In this paper, an autonomous orbit control of a satellite in Low Earth Orbit is investigated using model predictive control. The absolute orbit control problem is transformed to a relative orbit control problem in which the desired states of the reference orbit are the orbital elements of a virtual satellite which is not affected by undesirable perturbations. The relative motion is modeled by Gauss’s variational equations including J2 and drag perturbations which are the dominant perturbations in Low Earth Orbit. The advantage of using Gauss’s variational equations over the Cartesian formulations is that not only the linearization errors are much smaller, but also each orbital element can be controlled independently. Model predictive control finds the finite horizon optimal firing times of the satellite thrusters. The problem of orbit control has been cast as a linear programming which is a subset of convex optimization problems. As a result, model predictive control can maintain and control orbits of Low Earth Orbit satellites in optimal way, and this modern control technique can be an alternative for traditional analytical-based orbit control methods. Also, a comparison between model predictive control and linear quadratic regulator orbit control showed the superiority of MPC in fuel consumption.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3